Reflections on Catalytic Selective Oxidation: Opportunities and Challenges

نویسنده

  • Stuart H. Taylor
چکیده

Currently, and looking forward, there is an ever increasing demand to perform chemical transformations with optimized atom and energy efficiency. In parallel, there is also growing interest in diversification of chemical feedstocks from more traditional ones. For example, effective and economic transformation of biorenewable chemical feedstocks and shale-gas, are just two that can be highlighted. These targets are demanding and challenging, and the required shift in industrial production of energy and chemicals will not be possible without advances in catalysis. This Special Issue focuses on selective catalytic oxidation, as it offers significant potential as an approach to achieving green and efficient chemical transformations of a broad range of substrates. Selective oxidation offers many challenges, not least of which is the control of product selectivity to the required products. Control of selectivity can be particularly challenging, as the desired products are less thermodynamically favoured compared to carbon oxides. This can be a particular problem if high temperatures are required to activate stable molecules, as these conditions can result in significant sequential over-oxidation of the desired products. A number of strategies have been developed to minimise such affects, and perhaps one of the most common is to utilise oxidants which are more active than molecular oxygen. A number of oxidants can be employed for selective catalytic oxidation, and depending on scale, reaction efficiency and relative cost of the oxidant and product, specific oxidants can be economic to use (e.g., hydrogen peroxide). However, the use of molecular oxygen, preferably directly from air, to achieve high yields of target products selectively must be the ultimate aim. There are some large scale selective catalytic oxidation processes that operate commercially. Formaldehyde is a bulk commodity chemical with a large worldwide market, it has many important uses, with major applications for thermosetting resins, manufacture of polyurethane foam, thermoplastics and adhesives. The two major industrial processes for production of formaldehyde are from the catalytic oxidation of methanol. One method is via an oxidation-dehydrogenation reaction using a silver-based catalyst. The alternative is direct oxidation of methanol to formaldehyde by oxygen using a mixed metal oxide iron molybdate catalyst [1]. The iron molybdate catalysed process is becoming increasingly prevalent, since it operates at a lower temperature than the silver catalysed process, and the catalyst is more robust. These advantages mean that the cost per tonne of formaldehyde production using iron molybdate catalysts is lower and yields a higher return on capital investment [2]. The industrial iron molybdate catalyst consists of a mixed metal oxide phase, Fe2(MoO4)3, together with excess MoO3. Fe2(MoO4)3 is considered to be the active/selective phase, with MoO3 being selective but with low activity, and Fe2O3 unselective forming CO2. It has been reported that the catalyst must contain both Fe2(MoO4)3 and excess MoO3 in order to achieve high activity, selectivity and life-time. Catalyst deactivation is due to loss of molybdenum, and it is proposed that the excess MoO3 ensures that no iron rich phase is formed during the catalyst lifetime. Hence, although the iron molybdate catalyst is used industrially, and has been for many years, scope still exists to develop improved catalysts and improve our understanding of the process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles

Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for t...

متن کامل

Investigation of Catalytic Activity of Bis[2-(p-tolyliminomethyl)phenolato] Copper(II) Complex in the Selective Oxidation of Alcohols with Hydrogen Peroxide

In this article, the catalytic activity of bis[2-(p-tolyliminomethyl)phenolato] copper(II) complex was studied, for the first time, in the oxidation of various primary and secondary alcohols to the corresponding aldehydes or ketones. The effect of different solvent was studied in the oxidation of benzyl alcohol and methanol was chosen as the reaction medium. Also the effect of different oxidant...

متن کامل

Application of Thionine Dye for Highly Sensitive and Selective Catalytic kinetic Determination of Osmium

Anew, highly sensitive and selective catalytic kinetic method (CKM) for determination of osmium (VIII) has been established based on its catalytic effect on the oxidation of thionine dye by hydrogen peroxide in alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance band of thionine at 600 nm. Under the optimum conditions, the proposed ...

متن کامل

Role of water in the partial oxidation of propane to acrylic acid over Mo1V0.3Te0.23Nb0.12Ox catalyst

Effects of water on the catalytic performances of MoVTeNbO catalyst in the oxidation of propane to acrylic acid have been investigated at different reaction temperatures and different steam contents. Obtained results show that both catalytic performances and catalyst structure are very sensitive to the presence of water vapor in the reaction feed. Presence of water induces some structural modif...

متن کامل

Preparation and performance analysis of γ-Al2O3 supported Cu-Ru bimetallic catalysts for the selective Wet Air Oxidation of Aqueous Ammonia to Nitrogen.

Series of Copper Ruthenium (Cu-Ru) bimetallic catalysts supported on γ-Al2O3 with different metal loading are prepared and investigated for catalytic wet air oxidation of ammonia to nitrogen. The ammonia decomposition activity was studied at three different temperatures i.e. 150oC, 200oC, and 230 oC and it is found that catalytic activity increases with the increase in temperature along with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017